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ABSTRACT
This paper presents an approach that deals with the feature
selection problem, and includes two main aspects: first, the
selection is done during the evolutionary learning process,
i.e., it is a dynamic approach; and second, the selection is
local, i.e., the algorithm selects the best features from the
best space region to learn at a given time of the exploration
process. While the traditional feature selection is based on
the attribute relevance, our approach is based on a new con-
cept, called feature influence, which is aware of the dynamics
and locality of the concept. The feature influence provides
a measure of the attribute relevance at a certain instant
of the evolutionary learning process, since it depends on
each generation. Experimental results have been obtained
by comparing an EA–based supervised learning algorithm to
its modified version to include the concept approached. The
results show an excellent performance, as the new adapted
algorithm achieves the same classification results while using
less rules, less conditions in rules and much less generations.
The experiments include the statistical significance of the
improvement over a set of sixteen datasets from the UCI
repository.
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I.2.6 [Learning]: Concept learning, Knowledge acquisition

General Terms
Algorithms
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1. INTRODUCTION
Classification addresses the computational problem of pre-

dicting the class label of an unseen example, where the class
is a discrete variable of practical importance. In general,
given a collection of examples (training dataset), where each
example contains a set of features (or attributes) and one of
the features is the class, we try to find a knowledge model
for the class as a function of the values of the remaining at-
tributes, in such a way that unseen examples will be assigned
a class as accurately as possible. The knowledge models are
usually represented as decision rules or trees. A decision
rule is a “if C then L” type, where C is a conjunction of con-
ditions that establish what values the attributes can take to
classify an example with class label L. When a feature ai

is discrete, the rules take the form of “if ai ∈ {v1, . . . , vk}
then L”, where the values {v1, . . . , vk} are not necessarily all
those that the feature can take. When a feature aj is con-
tinuous, typically the rules take the form of “if aj ∈ [lj , uj ]
then L”, where lj and uj are two real values belonging to
the range of the feature and lj < uj .
Decision rule discovery is a problem with very large search

space, where an exhaustive search is not applicable in prac-
tice. Evolutionary Algorithms (henceforth EAs) have been
applied extensively to solve this task, providing an excellent
performance. Several approaches have been developed to
deal with decision rule discovering, among them: Gabil[6],
Gil[11], Sia[16], Ecl[7], Hider[1] and GAssist[2].
In addition to the efficiency and performance of the EA,

the success of classification also depends on other factors,
such as the quality of the data. In this sense, feature se-
lection is the process of identifying and removing irrelevant
and redundant information from the dataset [10]. The suit-
able attribute selection is beneficial for improving the per-
formance of common learning algorithms from a double per-
spective: first, the decrease of the number of features leads
to a reduction of the search space size, which has a positive
influence on the convergence of the EA; second, the identi-
fication of relevant attributes allows the EA to obtain more
accurate solutions, decreasing the further classification error
provided by the EA.
Most of the feature selection algorithms are applied be-

fore the learning algorithm as a preprocessing method, and
therefore reduce the number of attributes in a global way,
that is, they take into account the entire space defined by
the attributes [13]. There exist a number of feature selec-
tion techniques in the literature, based on statistics [12],
on neighborhood [14], on information gain [8], or even on
EAs [5, 15, 17] that address the problem by using this static
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strategy. Then, the learning algorithm would only analyze
the selected attributes, reducing the computational cost and
generally improving the quality of data. A dynamic strat-
egy, in which feature relevance is discovered at the same
time that only relevant features are considered to build the
prediction model, would be preferred. However, an attribute
might be relevant in a specific region of the search space and
irrelevant in another one. This aspect, the local relevance of
a feature, can not be considered by feature selection meth-
ods that address only once and globally the search space.
This paper presents an approach that deals with the fea-

ture selection problem, and includes two main aspects: first,
the selection is done during the learning algorithm, i.e., it is
a dynamic approach; and second, the selection is local, i.e.,
the algorithm selects the best features from the best space
region to learn at a given time of the exploration process.
While the traditional feature selection is based on the at-
tribute relevance, our approach is based on a new concept,
called feature influence, which is aware of the dynamics and
locality of our approach, as it will be shown in next sections.
The paper is organized as follows. Section 2 presents the

motivation of our work. The EA–based learning algorithm
we have used to show the quality of our approach is briefly
described in Section 3. The concept of feature influence is
introduced in Section 4. In Section 5 a very simple case of
study is illustrated, in which the advantage of the concept
can be graphically observed. An application of the approach
idea is described in Section 6. The experimental results car-
ried out with sixteen datasets from the UCI repository are
discussed in Section 7. Finally, the conclusions are summa-
rized in Section 8.

2. MOTIVATION
Feature selection has been widely researched in the ma-

chine learning literature. The use and importance of at-
tribute selection methods is accepted and used by researchers
and practitioners. In general, the goal of feature selection
methods for classification is to choose attributes that are
relevant to an application in order to achieve the maximum
performance with the minimum measurement effort. Liu
and Motoda [13] give the following definition:“a relevant
feature is a feature that if it is removed, the measure of the
remaining features will deteriorate, be the measure accuracy,
consistency, information, distance, or dependence”.
Although there are many other definitions for features to

be relevant [4], all of them define the relevance as a static
property, since it is independent on the state of the learning
process. However, an attribute might be very relevant at
a specific moment and irrelevant or even harmful in others.
To illustrate this idea, let us use an example: Pima Indians
Diabetes [3], with eight continuous attributes {a1,. . . ,a8}
and two discrete class labels {0,1}. After a run, an EA–
based learning algorithm obtains the set of rules shown in
Figure 1.
Each rule has been obtained by a different call to the EA,

following a sequential covering strategy. Thus, the rule R1
contained the attributes from a1 to a6. Hence, a7 and a8 are
irrelevant features in the first call to the EA. The second rule
R2 has only one condition for a6, therefore the remaining
attributes, including those used in R1, are irrelevant in the
second call to the EA. If we removed all the features, except
a6, the performance of the EA might be higher when the
search space and the data dimensionality are significantly

R1: if a1 ∈ [ , 13.5] and a2 ∈ [ , 143.5] and
a3 ∈ [ , 118] and a4 ∈ [ , 58] and
a5 ∈ [ , 397] and a6 ∈ [ , 58.3]

then class=0

R2: if a6 ∈ [23.3, ] then class=1

R3: if a7 ∈ [ , 0.67] then class=0

R4: class=1

Figure 1: Set of rules obtained by Hider for Pima
database.

reduced. However, this particular selection is valid only for
this execution, and not globally.
Commonly, learning algorithms build the knowledge model

by using the set of attributes provided by the feature selec-
tion method applied previously. On the contrary, if we were
able to select only those attributes that are relevant at each
specific phase of the learning process, then we would achieve
a dynamic feature selection. Thus, our goal is that the at-
tribute selection process adapts to the state of the learning
process, not only for each rule, but at each generation of the
EA.
In Section 4, we are going to define a new concept, named

feature influence, that represents the local and dynamic at-
tribute relevance at a certain time of the rule discovery pro-
cess. However, before that, it is necessary to give a brief
overview of the EA–based learning algorithm we will use
along the paper, and whose experimental results will be
shown in Section 7.

3. HIDER
In this section, we will briefly give an overview of the EA–

based learning algorithm we are going to use in this paper.
As we will see in Section 7, two versions of this algorithm
will be used: the original algorithm, without changes, and
an adapted version to include the feature influence across
the evolutionary process. The reader can find a detailed
description of Hider in [1, 9].

Hider is an EA–based supervised learning tool that pro-
duces a set of decision rules. Initially, the set of rules is
empty and the training dataset is complete. The call to
the evolutionary process generates one rule at a time, which
is included in the final set of rules and used to remove ex-
amples from the training data. If the dataset still contains
examples, the evolutionary process is started again with the
reduced training data in order to produce the next rule. This
loop is repeated until the set of training data is empty. The
final set of rules follows the same order that the rules were
generated. Thus, when a new example needs to be classi-
fied, the set of rules is sequentially evaluated according to
the order, so if an example is not classified by a rule, the
next one is tried.
At each iteration, the individuals of the population are

evaluated according to the following fitness function

φ(xij) = N −CE(xij) +G(xij) + coverage(xij) (1)

where xij is the i
th individual of the jth generation; N is the

number of examples being processed; CE(xij) is the class
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error, i.e. the number of examples belonging to the region
defined by the rule that do not have the same class; G(xij)
is the number of examples correctly classified by the rule;
and coverage(xij) gives the proportion of the search space
covered by the rule.
After evaluating all the individuals, the next generation

is built as follows: the best one is replicated (elitism); a
set of individuals are selected and replicated; another set of
individuals are recombined and the offspring are included in
the next generation; finally, all new individuals, except the
best, are mutated according to the mutation probability.

4. ATTRIBUTE INFLUENCE
Let us assume we have a dataset with N examples and

M attributes, where ak denotes the k
th attribute, with 1 ≤

k ≤ M . Let G be the number of generations that the EA
spends to obtain a rule. Let Pj be the genetic population
for the jth generation, with 1 ≤ j ≤ G.

Definition 1 (fitness function value)
Let φ(xij) be the fitness function value of the individual xij,
where xij refers to the ith individual of the population Pj

(jth generation).

Equation 1 shows the fitness function used byHider. This
function must be maximized.

Definition 2 (k–partial fitness function value)
Let ϕk(xij) be the k-partial fitness function value of the in-
dividual xij, where the fitness φ(·) is applied to all the at-
tributes but the kth attribute in the dataset, i.e., the condi-
tion for ak in the the individual (encoded rule) is assumed
to be true.

Definition 3 (average fitness value)
The average fitness value of the population Pj , denoted as
φ(Pj), is defined as follows:

φ(Pj) =
1

|Pj |
|Pj|∑

i=1

φ(xij) (2)

Definition 4 (average k–partial fitness value)
The average k-partial fitness value of the population Pj, de-
noted as ϕk(Pj), is defined as follows:

ϕk(Pj) =
1

|Pj |
|Pj|∑

i=1

ϕk(xij) (3)

Definition 5 (influence)
The influence of the attribute ak for a specific individual xij,
denoted by I(ak, xij), is defined as the difference between the
fitness value and the k–partial fitness value of that individ-
ual. Formally, it is given by the following expression:

I(ak, xij) = φ(xij)− ϕk(xij) (4)

Definition 6 (average influence)
The average influence of the attribute ak on the population
Pj , denoted by I(ak, Pj), is defined as the difference between
the average fitness value and the average k–partial fitness
value at the jth generation. Formally, it is given by:

I(ak, Pj) = φ(Pj)− ϕk(Pj) (5)
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Figure 2: Iris Plants Dataset.

As we can see, there exists a direct relation between the
feature influence and both the generation and genetic in-
dividuals. The feature influence provides a measure of the
attribute relevance at a certain instant of the learning pro-
cess, since it depends on the generation. Furthermore, this
measure is also dependent on the individuals, that are en-
coded by rules, so it is a relevance value in a specific region of
the search space defined by the features. Therefore, we can
state that feature influence is a dynamical and local concept,
which evolves with the evolutionary learning process.
On the other hand, while the relevance can be only high

or low, the influence can be positive, negative or null, inde-
pendently of the level of such influence. Positive influence
(I(ak, Pj) > 0) means that the fact that the attribute is in-
cluded in the dataset is beneficial for the accuracy of model,
since removing it would imply that the average fitness is
lower. On the contrary, negative influence (I(ak, Pj) <
0) means that the fact that the feature is included in the
dataset has negative effect, since removing it would mean
that the average fitness is higher. Finally, when the influ-
ence is null (I(ak, Pj) = 0), the atribute is irrelevant, since
the fitness value does not vary.

5. A CASE OF STUDY: IRIS DATASET
In this section, we describes a very illustrative example to

show graphically the concept of feature influence. The Iris
dataset[3] is a very well–known dataset, and we are aware of
its ease to be analyzed and classified due to the separable dis-
tribution of the labels. It is a very simple database with 150
examples, 4 continuous attributes (a1:sepal length, a2:sepal
width, a3:petal length and a4:petal width) and 3 classes (se-
tosa, versicolor and virginica). The two first features are
irrelevant and the dataset is easily classified by using the
features a3 and a4. Figure 2 illustrates the distribution of
the examples and classes in the space defined by such at-
tributes.

Hider was run with default parameters values (a pop-
ulation size of 100 individuals and 100 generations), and
obtained the set of decision rules shown in Figure 4. These
rules are also depicted in Figure 2. Since Iris is a very sim-
ple dataset, HIDER found easily the rules without applying
feature selection. However, the influence of each attribute
was measured during the execution in order to observe its
behavior, although these measurements were not used for
selecting the relevant attributes. Figure 3 graphically shows
the influence of the attributes during the learning process
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Figure 3: Feature influence for Iris.

R1: if a4 ∈ [ , 0.8] then class=setosa

R2: if a3 ∈ [ , 5.15] and
a4 ∈ [ , 1.65]
then class=versicolor

R3: class=virginica

Figure 4: Set of rules obtained by Hider for Iris
database.

of rules R1 (on the left) and R2 (on the right). The influ-
ence progression for the rule R3 is not displayed because it
is the default rule and it does not contain any condition.
As we can notice, the attribute a4 offers high positive in-
fluence (I(a4, Pj) > 0) during all the evolutionary process
for both rules. Therefore, such feature is very important
for these rules and it must be considered. The attribute a3

also shows positive influence (I(a3, Pj) > 0) for rule R2,
although it is lower than the influence shown by a4. Never-
theless, for rule R1, a3 has influence in the first generations,
but this influence is null from generation number 29 to the
end, so that a3 could be removed for the rest of genera-
tions. This is coherent with the results, because in fact, rule
R1 does not present any condition for a3. Finally, a1 and
a2 show always null influence and they can be removed for
all rules, as Figure 4 depicts. It is also worth to note that
attribute a3 starts being less important exactly when the
influence of attribute a4 increases, around generation 15

th.
The analysis shows several important points: first, since

attributes a1 and a2 provides null influence, these attributes
should be easily detected by any global feature selection
technique; second, the influence of attributes a3 and a4 is
not the same depending on the region of the search space
where the EA is exploring at that generation, showing this
way its local aspect; and third, the influence varies along the
time, i.e., it is dynamic, and it tends to be stable while the
learning process is performing.
This empirical study proves that feature influence can

be very useful in EA–based learning approaches similar to
HIDER. As an application of the concept we introduce, we

will show in Section 6 how to adapt the mutation probabil-
ity in the EA based on the influence of attributes, and in
Section 7, the performance of this idea.

6. APPLICATION: MUTATION
There are several ways to integrate the feature influence

in the learning process. In this section we present one of
those, where the generalization probability is set according
to the influence of attributes.

Hider encodes each rule (phenotype) as one individual
(genotype) by using an original representation, called natu-
ral coding [9]. This encoding assigns only one gene for each
attribute, regardless of its type (continuous or discrete), so
that each gene represents only one condition in the rule.
With regard to the genetic operators, there are two kinds
of mutation: the normal mutation causes a simple change
in the value of the condition, whereas the extreme mutation
generalizes the rule by removing completely the condition.
In principle, Hider applies these operators with constant
values for the mutation probabilities per gene. In particu-
lar, such values are 1

m
(where m is the number of attributes)

and 0.05 for the normal mutation and the extreme mutation,
respectively.
Our approach consists in setting dynamically the afore-

mentioned probabilities according to the influence of each
attribute. Notice that if we use the value of influence di-
rectly, the search could lead to the simplest solutions, but
not necessarily the best ones. Thus, we analyze the influ-
ence of each feature with regard to the rest of the attributes.
If I(ak, xij) is the influence of the attribute ak on a specific
individual xij , then by I(ak, xij) ± σ we mean the average
of I(ak, xij) (with 1 ≤ k ≤ m) in the range of the standard
deviation. With these values, the mutation operators are
applied according to following cases:

• if I(ak, xij) > I(ak, xij)+σ, then the normal mutation
is applied with probability 1, so that this mutation fa-
vors the exploration for an attribute with high positive
influence.

• if I(ak, xij) < I(ak, xij) − σ, then the extreme muta-
tion is applied, in order to delete the condition corre-
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Table 1: Parameters of the evolutionary algorithm.

Parameter Hider-IF Standard-Hider
Population Size 100
Number of Generations A maximum of 100, depends on learning rate.
Replication 20%
Recombination 80%
Individual Mutation Probability 0.5
Gene Normal Mutation Probability self-setting 1

‖attributes‖
Gene Extreme Mutation Probability self-setting 0.05

Table 2: Experimental results.

Hider-IF Standard-Hider
Dataset ER ± σ NR ± σ NC ± σ NG ± σ ER ± σ NR ± σ NC ± σ NG ± σ
Breast Cancer 4.1 ± 1.9 2.0 ±0.0 6.3 ± 1.0 39.5 ± 8.0 4.1 ± 1.9 2.0 ±0.0 5.7 ± 1.0 42.2 ± 7.3

Bupa Liver Dis. 34.4 ±10.9 4.1 ±0.7 8.1 ± 1.5 126.7 ± 21.6 37.7 ±11.4 4.2 ±0.7 12.8 ± 3.0 204.1 ± 48.0

Cleveland 22.7 ± 6.1 4.0 ±0.6 23.6 ± 4.3 135.3 ± 24.1 25.0 ± 8.2 6.5 ±1.0 42.2 ± 7.5 347.6 ± 88.6

German Credit 27.1 ± 2.2 4.4 ±0.7 39.4 ± 7.0 150.8 ± 32.9 28.5 ± 4.3 9.8 ±1.2 88.6 ±14.6 561.1 ± 85.0

Glass 33.3 ± 7.1 10.5 ±1.2 50.8 ± 7.1 641.5 ±122.7 35.7 ± 7.5 11.6 ±1.0 80.0 ± 7.8 874.1 ± 93.9

Heart Desease 19.6 ± 9.5 3.7 ±0.8 10.1 ± 1.8 111.5 ± 34.2 23.3 ± 6.0 5.0 ±0.9 20.2 ± 4.7 273.3 ± 26.6

Hepatitis 14.0 ±10.5 3.2 ±0.4 16.9 ± 2.6 92.3 ± 21.9 15.3 ±10.3 4.3 ±1.0 25.0 ± 6.6 173.9 ± 46.4

Horse Colic 19.2 ± 9.4 4.8 ±0.4 40.0 ± 4.5 188.3 ± 30.9 25.8 ± 8.8 12.5 ±1.6 111.8 ±15.3 747.5 ±114.9

Iris 3.3 ± 4.5 3.3 ±0.6 3.2 ± 0.4 72.7 ± 19.6 4.0 ± 4.4 3.2 ±0.6 3.3 ± 0.6 82.6 ± 13.9

Lenses 25.0 ±25.0 4.5 ±0.8 3.7 ± 1.1 79.2 ± 15.3 25.0 ±25.0 4.5 ±0.8 3.7 ± 1.1 81.2 ± 15.5

Mushroom 1.2 ± 0.7 3.1 ±0.3 8.3 ± 2.8 112.3 ± 16.2 1.5 ± 0.5 4.1 ±0.9 17.3 ± 7.8 220.9 ± 39.4

Pima Diabetes 26.7 ± 4.2 3.9 ±0.3 9.8 ± 1.5 123.4 ± 16.7 27.0 ± 3.5 6.0 ±0.9 29.6 ± 5.1 372.3 ± 93.2

Vehicle 35.4 ± 3.7 16.0 ±2.4 204.1 ±28.1 937.9 ±166.0 35.7 ± 5.4 21.8 ±1.9 325.0 ±33.0 1860.3 ±164.4

Vote 4.4 ± 2.8 2.1 ±0.3 1.1 ± 0.3 63.1 ± 9.2 5.1 ± 2.5 3.2 ±0.9 4.2 ± 2.9 103.9 ± 26.8

Wine 4.7 ± 5.1 4.0 ±0.0 16.4 ± 2.2 177.4 ± 18.5 4.8 ± 4.4 6.1 ±0.9 56.4 ±10.9 483.2 ± 73.5

Zoo 6.0 ± 6.6 7.5 ±0.5 12.2 ± 4.6 180.5 ± 20.8 6.0 ± 6.6 7.9 ±0.8 13.5 ± 2.7 216.3 ± 34.0

sponding to an attribute with low positive influence or
negative influence.

• if I(ak, xij)−σ ≤ I(ak, xij) ≤ I(ak, xij)+σ, then the
kind of influence is not clear and normal mutation is
applied with a probability proportional to I(ak, xij).

In order to show the quality of our approach, we have de-
signed the experiments described in the next section, where
we compare the results obtained by the standard HIDER
to that obtained by using the dynamic setting of mutation
probabilities.

7. EXPERIMENTAL RESULTS

Two different versions of Hider have been run with a
set of datasets from the Uci Repository [3]. The first one
is called Standard-Hider and is the version presented in [9].
The second one is the same algorithm but it incorporates the
self–setting of mutation probability according to the previ-
ous section. We named this version Hider-IF. Both were
run with the parameters given in Table 1.
To measure the performance of each method, a 10–fold

cross–validation was achieved with 16 datasets. For each
dataset, the algorithms obtained 10 models (set of hierar-
chical rules), one per fold. The algorithms were run on the
same training sets and the knowledge models tested using
the same test sets, so the results were comparable. The val-
ues that represent the performance are the error rate (ER),

the number of rules (NR), the number of conditions (NC)
and the number of generations (NG). ER measures the ac-
curacy and is the average number of misclassified examples
expressed as a percentage. NR and NC give a measurement
of the complexity of the model, being the average number of
rules and the average number of conditions per model, re-
spectively. Finally, NG measures the convergence and is the
average number of generations that the algorithm iterated
for producing a set of rules. Table 2 gives the results pro-
duced by each method. The first column shows the datasets
used in the experiments; the next four columns give respec-
tively the ER, NR, NC and NG together with the standard
deviations (σ) obtained by Hider-IF. Likewise, the last four
columns give the same measurements for Standard-Hider.
As we can see in Table 2, HIDER-IF obtained better re-

sults than the standard version for most experiments. The
specific improvement produced for each measurement is shown
in Table 3. Thus, εer is the improvement for the error
rate (ER) and it has been calculated by dividing error rate
of Hider-IF by the corresponding error rate of Standard-
Hider. The same operation has been carried out to obtain
the other improvement coefficients (εnr, εnc and εng), but us-
ing the corresponding measurements (number of rules, num-
ber of conditions and number of generations, respectively).
Furthermore, we applied the Student’s T–test of difference
of means with a critical value α < 0.05, in order to deter-
mine whether the improvements were statistically significant
or not.
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Table 3: Improvements.

ER NR NC NG
Dataset εer Sig. ST εnr Sig. ST εnc Sig. ST εng Sig. ST
Breast Cancer 1 = 1 = 0.9 − 1.07 +
Bupa Liver Disorder 1.09 + 1.02 + 1.58 + • 1.61 + •
Cleveland 1.1 + 1.63 + • 1.79 + • 2.57 + •
German Credit 1.05 + 2.23 + • 2.25 + • 3.72 + •
Glass 1.07 + 1.1 + • 1.57 + • 1.36 + •
Heart Desease 1.19 + 1.35 + • 2 + • 2.45 + •
Hepatitis 1.1 + 1.34 + • 1.48 + • 1.88 + •
Horse Colic 1.35 + 2.6 + • 2.8 + • 3.97 + •
Iris 1.2 + 0.97 − 1.03 + 1.14 +
Lenses 1 = 1 = 1 = 1.03 +
Mushroom 1.25 + 1.32 + • 2.08 + • 1.97 + •
Pima Diabetes 1.01 + 1.54 + • 3.02 + • 3.02 + •
Vehicle 1.01 + 1.36 + • 1.59 + • 1.98 + •
Vote 1.16 + 1.52 + • 3.82 + • 1.65 + •
Wine 1.02 + 1.53 + • 3.44 + • 2.72 + •
Zoo 1 = 1.05 + 1.11 + 1.2 + •
Average 1.1 1.41 1.97 2.08

In Table 3, there are three columns for each measure-
ment. The first of them gives the improvement coefficient
(εer, εnr, εnc or εng). The next column (Sig.) shows the
sign of the improvement, the meaning of the symbols be-
ing as follows: “−” denotes that Hider-IF obtained worse
result than Standard-Hider; “+” denotes that Hider-IF
obtained better result than the standard version; and “=”
denotes that both algorithms obtained the same result. In
the last column (ST ), the results of the statistical test are
shown, so that a “•” means that the result is statistically
significant. Finally, the last row shows the average results
for each improvement coefficient.
As Table 3 shows, the results are clearly favorable for

Hider-IF, specially regarding the complexity and conver-
gence. Hider-IF reduced the ER for 13 out of 16 datasets,
although such improvement is not significant. For the re-
mainder, the ER was the same, resulting a global improve-
ment of 10% on average. The NR was also reduced for
13 datasets, but in this case, 11 out of them were statis-
tically significant, with an average improvement of about
40%. Likewise, Hider-IF obtained a smaller number of con-
ditions for 14 out of 16 datasets, with 12 positive cases for
the statistical test. For the number of conditions, the av-
erage improvement was still greater (97%), i.e., Hider-IF
reduces about half the complexity of the models. Although
the results show thatHider-IF has a better performance, we
must notice that those numbers were obtained using smaller
number of generations for all of datasets. Such reduction was
statistically significant in 13 cases. On average, it needed
half of the generations used by Standard-Hider.

8. CONCLUSIONS
This paper presents an approach that deals with the fea-

ture selection problem, and includes two main aspects: first,
the selection is done during the learning process, i.e., it is
a dynamic approach; and second, the selection is local, i.e.,
the algorithm selects the best features from the best space

region to learn at a given time of the exploration process.
While the traditional feature selection is based on the at-
tribute relevance, the method presented here is based on
a new concept, called feature influence, which is aware of
the dynamics and locality of the approach. The concept
is applied to adapt the mutation probability, and presents
an excellent performance as it is shown in the experimental
results.
As future work, we will use the approached concept to

remove dynamically attributes during the learning process.
In this way, we will obtain similar results by using less com-
putational resources, specially when the datasets have thou-
sands of attributes, as it is usual in the bioinformatics field.

9. REFERENCES
[1] J. S. Aguilar–Ruiz, J. C. Riquelme and M. Toro.

Evolutionary Learning of Hierarchical Decision Rules.
IEEE Transactions on Systems, Man and Cybernetics
– Part B, 33(2)(2003), 324–331.

[2] J. Bacardit and J. M. Garrell. Evolving multiple
discretizations with adaptive intervals for a Pittsburgh
Rule-Based Learning Classifier System. Genetic and
Evolutionary Computation Conference - GECCO
2003. Lecture Notes in Computer Science 2724, pp.
1818–1831, Springer-Verlag, 2003.

[3] C. L. Blake and C. J. Merz. UCI Repository of
machine learning databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science, 1998.

[4] A. L. Blum and P. Langley. Selection of Relevant
Features and Examples in Machine Learning. Artificial
Intelligence on Relevance, pp. 245–271, 1997.
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